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Introduction



Background

request for image processing:

• development of new devices
• re-mastering of histrical images

T. Kato et al. / Neural Networks 66 (2015) 64–78 65

(a) LR frame. (b) HR image.

Fig. 1. (a) An LR frame captured from a movie. (b) The HR image obtained by the proposed SR method.

registration of LR images, that is, we have to estimate relative
displacements of LR images. Our proposed method employs a
sub-pixel block matching method for image registration. Most of
conventional single-frame SR methods based on sparse coding use
the joint dictionary learning technique for combining HR and LR
image dictionaries. For multi-frame SR with sub-pixel level block
matching, it is unrealistic to prepare all correspondences between
HR and LR dictionaries for all possible displacements. Hence, in our
method, a dictionary for HR images is prepared in advance, and
taking into account the image degradation process, a dictionary for
LR images is generated from the HR dictionary. When degrading
the HR dictionary to LR dictionary, we apply sub-pixel translation.
Another contribution is that the proposed method can adaptively
select informative LR images for reconstructing HR image, which is
also a beneficial side-effect of sub-pixel accuracy block matching.
In that sense, the proposed method adaptively selects the patches
to be used for SR. By thresholding the matching score, the number
of LR images used for reconstructing HR image varies in each small
patch.Whenwe deal withmovies, it is difficult to estimate relative
displacements for the regionswhere objectsmove quickly, and it is
easy to estimate the relative displacements for the regionswithout
such objects. In general, for improving the quality of movies, it
is significant to sharpen those objects slowly moving or being at
rest, and this property is advantageous to the proposed method.
In Fig. 1, we show an experimental result obtained by applying
the proposed method to SR from movie frames. We capture five
consecutive images fromeachmovie, then their blurred and down-
sampled version is used as LR images. Fig. 1(a) is the target LR
frame, (b) is the HR image obtained by the proposed method. It is
seen that the proposed method sharpens LR movie frame. Details
of experimental settings and results will be shown in Section 7.

The rest of this paper is organized as follows. The image obser-
vationmodel is introduced in Section 2, and the sub-pixel accuracy
block matching method is briefly explained without technical de-
tails in Section 3. The notion of sparse coding is introduced in Sec-
tion 4. In Section 5, conventional super-resolution methods based
on sparse coding is explained, and in Section 6, a novelmulti-frame
SR method based on sparse coding is proposed. Section 7 shows
experimental results, and the last section is devoted to concluding
remarks.

2. Image observation model

In this section, we describe the image observation model.
Following the idea of Farsiu et al. (2004), we assume a continuous
image X̃(x, y) where (x, y) ∈ R2 are coordinate values. Then, we
assume that an ideal discrete HR image X and an LR image Y are
sampled from the continuous image X̃ according to the following

models:

X[m, n] =

W


X̃(x, y)


↓X (1)

Y [m, n] =

H ∗W


X̃(x, y)


↓Y + E[m, n], (2)

where W and H are warp and blur operators, ↓X and ↓Y are quan-
tization operators to generate HR and LR images, and E is an addi-
tive noise. In this paper, we denote coordinates in the continuous
space and the discrete space by (x, y) and [m, n], respectively. The
blurring is expressed by the convolution operator ∗.

Following the conventional formulation of super resolution, we
treat the HR and LR images as vectors X ∈ Rph , Y ∈ Rpl , and the LR
observation is assumed to be related with the HR image by

Y = S̄H̄W̄X+ ε̄, (3)

where Y and X are vectorized images, the matrix W̄ ∈ Rph×ph

encodes the warping or spacial distortion, the matrix H̄ ∈ Rph×ph

models the blurring effect, S̄ ∈ Rpl×ph is the down-sampling
operator, and ε̄ ∈ Rpl is the Gaussian noise.

Example-based SR approaches usually extract small patches x ∈
Rqh from the HR image and y ∈ Rql from the LR image Y. Thewhole
HR imageX is obtained by integratingHRpatches x. Each patch pair
(x, y) is connected by the observation model

y = SHWx+ ε, (4)

where W ∈ Rqh×qh , H ∈ Rqh×qh , S ∈ Rql×qh , and ε ∈ Rql .
Hereafter, operators on a whole image are denoted with over-
line, and operators on a patch are denoted without over-line. The
blurring effects are often modeled by convolution with a point
spread function. In this paper, we use a Gaussian filter for the point
spread function. The down-sampling process S is assumed to be an
impulse sampling. The down-sampled image is further affected by
the sensor noise and color filtering noise, and they are assumed
to be an additive Gaussian noise. In general, the spacial distortion
W includes translation, rotation, deformation and other possible
distortions. In this paper, we restrict W to simple translations,
which is reasonable when we treat small patches instead of the
whole image. Inmulti-frameSR,we assume that a set ofN observed
LR images Y1, Y2, . . . , YN are given. We first choose a target LR
image Yt out of N observed images, and the final output of an
SR method is the HR version of Yt . We refer other LR images as
auxiliary LR images henceforth. Without loss of generality, we let
t = 1, i.e., Y1 is the target image and Yj, j = 2, . . . ,N are
the auxiliary images. The LR observations are related with the HR
image X by

Yj = S̄H̄W̄jX+ ε̄, j = 1, . . . ,N, (5)
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Image Super-Resolution

• problem:
• restore a clear image from low-resolution images
• consider degradation caused by

• noise
• blur
• down-sampling

• typical setup:
• single-frame: one low-resolution image
• multi-frame: multiple low-resolution images with different degradation
processes

• typical approaches:
• model-based: e.g. random Markov field
• example-based: e.g. sparse representation
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Single-Frame vs Multi-Frame

超解像手法の分類

3

マルチフレーム超解像
複数枚の画像を利用．

シングルフレーム超解像
 1枚の画像のみを利用．

事例ベース超解像 再構成型超解像
辞書を用いた処理． 隣接する画素の関係に着目．

single-frame super-resolution

超解像手法の分類

3

マルチフレーム超解像
複数枚の画像を利用．

シングルフレーム超解像
 1枚の画像のみを利用．

事例ベース超解像 再構成型超解像
辞書を用いた処理． 隣接する画素の関係に着目．

multi-frame super-resolution
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Multi-Frame Image Super-Resolution

=⇒

cba · 1 ◦ · ◦ · 2 ◦ · ◦ · ◦ · · · · · · · · · · · 3 ◦ · · · · · ◦ · · · · · · 4 · · · 5/37



Problem Formulation



Sparse Representation

• notation:
• dictionary: D = (d1,d2, . . . ,dk) ∈ Rp×k

• observation: y ∈ Rp

• coefficients: α ∈ Rk

optimization problem
estimate appropriate α and D:

minimize
α,D

‖y − Dα‖22 + η‖α‖1
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Degradation Model

• notation:
• X: high-resolution image
• Y : low-resolution image
• model of degradation process:

Y = L X + ε = SHW X + ε

where degradation L is decomposed as
• S: down-sampling
• H: blurring
• W: warping

and ε is additive noise
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Single-Frame Problem

• hypothesis:
• single observation: Y = L X + ε

• x: patch of X
y: corresponding patch of Y

• sparse representation with identical coefficients:

x = Dhα (Dh : high-resolution dictionary)
y = Dlα (Dl : low-resolution dictionary)
' Lx = LDhα (linearity assumption)

problem
estimate of α from a low-resolution image:

minimize
α

‖y − Dlα‖22 + η‖α‖1
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Multi-Resolution Dictionaries

T. Kato et al. / Neural Networks 66 (2015) 64–78 67

Fig. 3. A framework of super resolution based on sparse coding.

which is widely used sparse linear regression, and there are some
computationally efficient algorithms for estimating the coefficient
such as LARS-lasso algorithm (Efron, Hastie, Johnstone, & Tibshi-
rani, 2004) and feature-sign search algorithm (Lee, Battle, Raina, &
Ng, 2007). In this paper, we adopt the ℓ1-norm sparse coding as a
building block for super-resolution, anduse the feature-sign search
algorithm for solving the problem (11). The algorithm searches
for the signs of the nonzero coefficients αj. Using such guesses, it
solves the unconstrained quadratic programming, and refines the
guess if it turns out to be initially incorrect. The algorithm is shown
to converge to a global optimum of the problem (11) in a finite
number of iterations.

In sparse coding, the design of dictionary D is of prime
importance. The first attempt of the example-based SR method
employs small patches of HR images themselves as atoms
(Freeman et al., 2002). Learning the dictionary from observed data
is shown to improve the reconstruction performance. Actually, the
HR and LR dictionary learning is the core technical component of
the state-of-the-art SRmethods based on sparse coding (Yang et al.,
2008, 2010; Zeyde, Elad, & Protter, 2010). Representative methods
for dictionary learning are Method of Optimal Directions (Engan,
Aase, & Husoy, 1999) which is based on vector quantization, and
K-SVD (Aharon, Elad, & Bruckstein, 2006) which is based on
k-means clustering and the singular value decomposition. In this
paper, we use Lee’s method (Lee et al., 2007), which is known to
perform well with reasonable computational cost.

5. Super-resolution via sparse coding

The basic idea of single-frame SR based on sparse coding is
proposed in Yang et al. (2008, 2010). We first explain that idea and
techniques for improving the quality of the reconstructed image.
Then, we introduce the multi-frame SR framework.

5.1. Inferring HR image from single LR image

Using HR training images and LR training images, an HR
dictionary Dh

∈ Rqh×K and an LR dictionary Dl
∈ Rql×K are learned

before performing HR image reconstruction. Assume the HR patch
x is represented by x = Dhα, and represent the three steps of image
degradation process S,H , andW all togetherwith L ∈ Rql×qh . Then,
the LR and HR images are connected as

y = Lx = LDhα = Dlα, (12)

where Dl
= SHWDh. We emphasize that in the above equation,

we made an assumption, which is the core idea of sparse coding
based SR, that the HR patch shares the same coefficient with the LR
patch in sparse representation. For each input LR patch y, a sparse
representationwith respect toDl is found. Then, the corresponding
HR bases in Dh is combined according to these coefficients to
generate the corresponding HR patch x (Fig. 3).

5.2. Reducing artifact at patch boundaries

In patch-based approaches, a sparse representation is obtained
first for an LR patch then for the corresponding HR patch. Obtain-
ing sparse representation individually for each local patch does not
guarantee the compatibility between adjacent patches, and we of-
ten suffer from block artifacts at the patch boundaries. To reduce
these block artifacts, overlapping patches are often used. In Free-
man et al. (2002) and Yang et al. (2008), an additional optimization
problem is solved after patch-wise SR to improve the consistency
of adjacent patches. For the sake of computational efficiency, we
follow the simple method to average the feature values in over-
lapped regions between adjacent patches (Chang et al., 2004). For
combining adjacent HR patches, we apply 2-dimensional Hanning
window to reduce the effect of overlapping regions.

5.3. Maintaining global consistency by back-projection

Sparse coding of the formEq. (11) does not demand exact equal-
ity Dα = y. Because of this and also because of noise and patch-
wise processing, the fundamental assumption denoted by Eq. (3)
for the target image Y1 and Xmay not be satisfied after patch-wise
SR. Hence, the back-projection (Irani & Peleg, 1993) is performed
for maintaining the global consistency (Wang, Hu, Xuan, Mu, &
Peng, 2011; Yang et al., 2008, 2010). Let X0 be the obtained HR im-
age by patch-wise SR and weighted averaging operation explained
in the previous section. To minimize the discrepancy between X0
and theHR image under themodel (3), we solve the followingmin-
imization problem

minimize
X

∥S̄H̄X− Y1∥
2
2 + c∥X− X0∥

2
2 (13)

by gradient descent, where c > 0 is a trade-off parameter. The up-
dating formula of the gradient method is explicitly written by

Xt+1 = Xt − ν[H̄TS̄T(S̄H̄Xt − Y1)+ c(Xt − X0)], (14)

where ν > 0 is a step size parameter. The optimized X is regarded
as the HR image with global consistency.

5.4. Multi-frame super resolution by sparse coding

In multi-frame scenario, each LR image is assumed to be an
outcome of different degradation of the same HR image. Although
multi-frame SR is expected to achieve better results usingmultiple
LR images, extraction and integration of useful information in LR
images are not a trivial task.

From observed LR images Yj, j = 1, . . . ,N , patches yj, j =
1, . . . ,N with different sizes are extracted by clipping operators
Cj ∈ Rqlj×pl , j = 1, . . . ,N , which will be defined later.

key issue
construct good Dl from Dh
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Multi-Frame Problem

• hypothesis:
• multiple observations: Y1, . . . , YN

Yk = Lk X + εk, k = 1, . . . ,N

• x: patch of X
yk: corresponding patches of Y

• sparse representation:

x = Dhα

yk = Dl
kα ' Lk x = Lk Dhα
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Multi-Frame Problem

• problem:
• estimate of α from multiple low-resolution images:

minimize
α

‖ỹ − D̃lα‖22 + η‖α‖1

where D̃ and ỹ are stacked as

D̃l =

Dl
1
...

Dl
N

 and ỹ =

y1...
yN
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Stacked Observations and Dictionaries

key issue
appropriately align multiple low-resolution images and dictionaries
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Block Matching

• simple approach: (Kato, Hino, and Murata 2015)
• block matching with reference patch

estimate L̂k = SHŴk s.t. yk = L̂k x

• sub-pixel accuracy method (Shimizu and Okutomi 2006)
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Observation Alignment

• stacked observation:

ỹ =

y1...
yN

 where yk = L̂k x = SHŴk x

T. Kato et al. / Neural Networks 66 (2015) 64–78 69

Fig. 5. The procedure of generating stacked LR observation ỹ by clipping operation. The boxes with dashed blue lines in individual patches denote the matched regions by
the sub-pixel accuracy blockmatching. Clipping operators C1, . . . , CN extract only pixels strictly inside the boxes with blue lines. The extracted regions are denoted by boxes
with solid red lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The procedure of generating stacked LR dictionary d̃l
k .

6.2. Implementation

In this section, we present a concrete procedure for gener-
ating the stacked observation vector ỹ and stacked LR dictio-
nary D̃l, which are the core components of the proposed SR
method.

For generating the stacked observation vector, patches y2, . . . ,
yN are extracted from auxiliary LR images by clipping operators
Cj ∈ Rqlj×pl j = 2, . . . ,N . The clipping operators are designed
to extract only the pixels completely included in the cutoff line as
shown in Fig. 5 in order to avoid boundary effects. In Fig. 5, clipping
operatorsC1, . . . , CN are designed to extract only pixels thoroughly
included in the boxes with blue lines in order to constitute the
vector ỹ. Then, the clipped images are stacked to reconstruct ỹ
as

ỹ =

y1
...
yN

 =
C1Y1

...
CNYN

 . (17)

We next explain how to generate the stacked LR dictionary
D̃l. As shown in Eq. (16), D̃l is composed of dictionaries Dl

j, j =
1, . . . ,N for yj, j = 1, . . . ,N . Each dictionary Dl

j is generated as
follows. Remember that we already have a dictionary Dh for HR
images. Each HR atom in Dh is embedded into the HR patch region,
then degenerated according to the image degradation processes S̄
and H̄ to obtain LR atoms (see Figs. 4(d) and (g), and 6: transition
from the HR space to the LR space). Parallel translation in HR
space is performed using bi-linear interpolation (Chang, 2009). For
estimating the luminance value at (x, y), we define u1 = ⌊x⌋ ∈ Z
and u2 = ⌊y⌋ ∈ Z, v1 = x − u1, v2 = x − u2. Then, we obtain the

luminance value at (x, y) as

X̃(x, y) =

1− v1 v1

 
X[u1, u2] X[u1 + 1, u2]

X[u1, u2 + 1] X[u1 + 1, u2 + 1]


×


1− v2

v2


. (18)

To obtain an operator W̄ for this sub-pixel accuracy translation,
we calculate the weighted sum of four pixel-level warp matrices.
Let w1, w2 ∈ Z be horizontal and vertical shifts, respectively, and
W̄[w1,w2] be thewarp operator. Then, the operator W̄ is obtained by

W̄ = (1− v1)(1− v2)W̄[w1,w2] + (1− v1)v2W̄[w1+1,w2]

+ v1(1− v2)W̄[w1,w2+1] + v1v2W̄[w1+1,w2+1]. (19)

Atoms for LR images are calculated by clipping operation from
the degraded HR atoms. Then, they are stacked to obtain d̃l as
shown in Fig. 6. From every atom in HR dictionary Dh, we calculate
the stacked LR atom d̃l as presented above, and obtain the stacked
LR dictionary D̃l. Denoting the embedding operator R ∈ Rph×qh ,
which embeds an HR atom into the location of target HR patch, D̃l

is represented by

D̃l
=

Dl
1
...

Dl
N

 =
C1S̄H̄W̄1RDh

...

CN S̄H̄W̄NRDh

 . (20)

6.3. Summary of the proposed method

We summarize the proposed method as a concrete procedure
in Algorithm 1. First of all, we arbitrarily fix the target image
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Dictionary Alignment

• stacked dictionary:

D̃l =

Dl
1
...

Dl
N

 where Dl
k = L̂k Dh = SHŴk Dh
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Fig. 5. The procedure of generating stacked LR observation ỹ by clipping operation. The boxes with dashed blue lines in individual patches denote the matched regions by
the sub-pixel accuracy blockmatching. Clipping operators C1, . . . , CN extract only pixels strictly inside the boxes with blue lines. The extracted regions are denoted by boxes
with solid red lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The procedure of generating stacked LR dictionary d̃l
k .

6.2. Implementation

In this section, we present a concrete procedure for gener-
ating the stacked observation vector ỹ and stacked LR dictio-
nary D̃l, which are the core components of the proposed SR
method.

For generating the stacked observation vector, patches y2, . . . ,
yN are extracted from auxiliary LR images by clipping operators
Cj ∈ Rqlj×pl j = 2, . . . ,N . The clipping operators are designed
to extract only the pixels completely included in the cutoff line as
shown in Fig. 5 in order to avoid boundary effects. In Fig. 5, clipping
operatorsC1, . . . , CN are designed to extract only pixels thoroughly
included in the boxes with blue lines in order to constitute the
vector ỹ. Then, the clipped images are stacked to reconstruct ỹ
as

ỹ =

y1
...
yN

 =
C1Y1

...
CNYN

 . (17)

We next explain how to generate the stacked LR dictionary
D̃l. As shown in Eq. (16), D̃l is composed of dictionaries Dl

j, j =
1, . . . ,N for yj, j = 1, . . . ,N . Each dictionary Dl

j is generated as
follows. Remember that we already have a dictionary Dh for HR
images. Each HR atom in Dh is embedded into the HR patch region,
then degenerated according to the image degradation processes S̄
and H̄ to obtain LR atoms (see Figs. 4(d) and (g), and 6: transition
from the HR space to the LR space). Parallel translation in HR
space is performed using bi-linear interpolation (Chang, 2009). For
estimating the luminance value at (x, y), we define u1 = ⌊x⌋ ∈ Z
and u2 = ⌊y⌋ ∈ Z, v1 = x − u1, v2 = x − u2. Then, we obtain the

luminance value at (x, y) as

X̃(x, y) =

1− v1 v1

 
X[u1, u2] X[u1 + 1, u2]

X[u1, u2 + 1] X[u1 + 1, u2 + 1]


×


1− v2

v2


. (18)

To obtain an operator W̄ for this sub-pixel accuracy translation,
we calculate the weighted sum of four pixel-level warp matrices.
Let w1, w2 ∈ Z be horizontal and vertical shifts, respectively, and
W̄[w1,w2] be thewarp operator. Then, the operator W̄ is obtained by

W̄ = (1− v1)(1− v2)W̄[w1,w2] + (1− v1)v2W̄[w1+1,w2]

+ v1(1− v2)W̄[w1,w2+1] + v1v2W̄[w1+1,w2+1]. (19)

Atoms for LR images are calculated by clipping operation from
the degraded HR atoms. Then, they are stacked to obtain d̃l as
shown in Fig. 6. From every atom in HR dictionary Dh, we calculate
the stacked LR atom d̃l as presented above, and obtain the stacked
LR dictionary D̃l. Denoting the embedding operator R ∈ Rph×qh ,
which embeds an HR atom into the location of target HR patch, D̃l

is represented by

D̃l
=

Dl
1
...

Dl
N

 =
C1S̄H̄W̄1RDh

...

CN S̄H̄W̄NRDh

 . (20)

6.3. Summary of the proposed method

We summarize the proposed method as a concrete procedure
in Algorithm 1. First of all, we arbitrarily fix the target image
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Double Sparsity

• sparse representation approach: (Kato, Hino, and Murata 2017)
• prepare “meta-dictionary”
• construct a dictionary

• which is sparse combination of meta-dictionary
• which offers sparse representation of target observations

(Rubinstein, Zibulevsky, and Elad 2010)
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Multi-Frame Alignment

T. Kato et al. / Neurocomputing 240 (2017) 115–126 117 

Fig. 2. Shift in the i th observation to the target image patch. The target image patch (red square in the upper-left part of the figure) is to be magnified as shown in the 

upper-right part of the figure, where the HR patch x is also shown in the red square. The target LR patch is placed in the i th observation (lower-left) by sub-pixel-level 

matching in LR space, and the image around the target patch in Y i is zoomed into for display. The blue dashed square is patch y i clipped from Y i . The upper-left point of 

the upper-left pixel of y i is regarded as the origin (0, 0), and the shift from the target patch y 1 is denoted by ( a, b ) ∈ [0, k ] 2 . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

2.2. Multi-frame super resolution by sparse coding 

Suppose N low-resolution images Y i ∈ R 

Q , i = 1 , . . . , N are ob- 

served, and all are varyingly degenerated from a high-resolution 

image X ∈ R 

P . Without loss of generality, we assume that the LR 

image Y 1 is the target for super resolution; the other N − 1 LR im- 

ages are called auxiliary images. 

We assume that each patch is exposed by the following im- 

age degradation process: for target patch y 1 , image degradation 

is modeled by Eq. (1) , and, for auxiliary patch pairs (x , y i ) , i = 

2 , . . . , N, observation model 

y i = GW i x + ε (5) 

is assumed, where W i is the parallel shift, and the clipping oper- 

ator corresponds to the i th LR patch, which is explained later and 

shown with an explicit operation in Appendix A . We note that G 

can be not identical for different images Y i , but they are assumed 

identical for the sake of simplicity and we concentrate on estimat- 

ing W i , i = 2 , . . . , N for N − 1 observations. 

We explain the concept of the shift and clipping operators W i 

with a schematic diagram in Fig. 2 . A detailed explanation is de- 

ferred until Section 3 . For ease of explanation, Fig. 2 depicts the 

case where y 1 ∈ R 

5 ×5 and the magnification factor is three, i.e. 

x ∈ R 

15 ×15 . The target patch y 1 is first extracted from the target 

image Y 1 as shown in the red square in “target LR image” of 

Fig. 2 . We then consider estimating the shift in the i th image Y i . 

We can roughly estimate the shift of target patch y 1 in the aux- 

iliary image Y i by sub-pixel-level accuracy matching in LR space, 

as shown in “i th LR image” of Fig. 2 . For a detailed explanation, 

a small region around the placed target patch in the i th LR im- 

age is zoomed into the bottom-right part of Fig. 2 . The grid cor- 

respond to pixels in the i th LR image. The target patch shown in 

the red square does not lie on the grid in general. To avoid a neg- 

ative effect at the non-overlapping region and use the informative 

area only, the pixels completely included in the target patch are 

extracted as the i th LR patch y i ∈ R 

(5 −1) ×(5 −1) , which is shown 

by the blue square. Since the target patch y 1 is represented 

by a vector of length q = 

√ 

q × √ 

q , the size of the patch in 

two-dimensional expression is 
√ 

q × √ 

q . On the other hand, the 

boundary-clipped patch has size q ′ = ( 
√ 

q − 1) × ( 
√ 

q − 1) . Once 

W i , i = 2 , . . . , N are estimated, the image SR based on sparse coding 

is straightforward. With the shift and the clipping { W 2 , . . . , W N } of 

auxiliary patches y 2 , . . . , y N ∈ R 

q ′ , the LR dictionaries correspond- 

ing to observations { y i } N i =1 
are stacked to construct a stacked LR 

dictionary: 

˜ D 

l = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

D 

l 
1 

D 

l 
2 

D 

l 
3 

. . . 

D 

l 
N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

G D 

h 

GW 2 D 

h 

GW 3 D 

h 

. . . 

GW N D 

h 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (6) 

This dictionary is used to approximate the stacked LR patch 

˜ y = 

⎡ 

⎢ ⎢ ⎣ 

y 1 
y 2 
. . . 

y N 

⎤ 

⎥ ⎥ ⎦ 

(7) 

by sparse coding: namely, the HR estimate ˆ x is given by 

ˆ α = arg min 

α
‖ ̃

 y − ˜ D 

l α‖ 

2 
2 + η‖ α‖ 1 , (8) 

ˆ x = D 

h ˆ α. (9) 

Each atom d h in the HR dictionary D 

h is shifted and clipped to an 

atom of size q ′ by the action of W i , i = 2 , . . . , N, and then blurred 

and down-sampled by the action of G to form corresponding LR 

atoms GW i d 
h 
, i = 2 , . . . , N. Each block of the stacked dictionary in 

Eq. (6) is composed of LR atoms obtained in this manner. 

cba · 1 ◦ · ◦ · 2 ◦ · ◦ · ◦ · · · · · · · · · · · 3 ◦ · · · · · ◦ · · · · · · 4 · · · 17/37



Dictionary Representation

• notation:
• dictionary for observation yi:

Dl
i = θi,(0,0)Dl(0,0) + θi,(0,1)Dl(0,1) + · · ·+ θi,(k,k)Dl(k,k)

• meta-dictionary matrix:

B =


Dl

1

Dl(0,0) · · · Dl(k,k)

. . .
Dl(0,0) · · · Dl(k,k)


• meta-dictionary coefficient:

θ =
[
1, θ2,(0,0), . . . , θ2,(k,k), . . . , θN,(0,0), . . . , θN,(k,k)

]T
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Double Sparsity Problem

• objective:

minimize
α,θ

‖ỹ − B vec
(
αθT) ‖22 + η‖α‖1

subject to Eθ ≤ 1, θ ≥ 0, θ1 = 1

where

E =


1

1 · · · 1
. . .

1 · · · 1
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Alternative Optimization

• optimization for registration:

θ̂ = arg min
θ

‖ỹ − B(I ⊗α)θ‖22

subject to Eθ ≤ 1, θ ≥ 0

• optimization for sparse representation:

α̂ = arg min
α

‖ỹ − B(θ ⊗ I)α‖22 + η‖α‖1 (21)
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Fig. 3. Double sparsity for our formulation of the multi-frame super resolution problem. The LR dictionary used for the sparse coding of the stacked LR patches was itself a 

sparse combination of base dictionaries generated by the pixel-level parallel shift in the HR dictionary followed by degradation. 

atom of dictionaries is assumed to be normalized to have unit � 2 

norm. 

Let [ n ] = { 1 , 2 , . . . , n } be a set of natural numbers from 1 to n ∈ 

N . To guarantee the stability of sparse codes, we define the notion 

of s -incoherence. 

Definition 1 ( s -incoherence) . For s ∈ [ K ] and D ∈ D, the 

s -incoherence μs ( D ) is defined as the square of the minimum sin- 

gular value among sub-dictionaries of D composed of s atoms: 

μs (D ) = ( min { ζs (D �) | � ⊆ [ K] , | �| = s } ) 2 , (22) 

where D � denotes a sub-dictionary with columns indicated by the 

index set �, | �| is the cardinality of �, and ζ s ( A ) is the s th largest 

singular value of a matrix A . 

In [23] (Theorem 4), the following result has been presented: 

Theorem 1 (Sparse Coding Stability) . Let D, D 

′ satisfy μs ( D ), μs ( D 

′ ) 
≥ μ for some positive constant μ and ‖ D − D 

′ ‖ 2 ≤ ε, and let y ∈ 

B R q , where B R q is the unit ball of R 

q . Suppose that there exists an 

index set I ⊆ [ K] of K − s indices such that for all i ∈ I, 

| d 


 
i ( y − D α(D , y )) | < η − τ with ε ≤ τ 2 η

27 

. (23) 

Then, the difference between two sparse coding coefficient vectors 

α( D, y ) and α( D 

′ , y ) is bounded as 

‖ α(D , y ) − α(D 

′ , y ) ‖ 2 ≤ 3 

2 

ε 
√ 

s 

ημ
. (24) 

In this theorem, the condition (23) implies that at least K − s 

inactive atoms in α( D, y ) do not have too high absolute correlation 

with the residual y − D α(D , y )) , and the degree of permissible cor- 

relation is bounded by η − τ, where η is the sparse coding regular- 

ization coefficient and τ ( < η) controls the strictness on the per- 

missible correlation. By applying this theorem to our double sparse 

dictionary learning problem, we obtain the following corollary: 

Corollary 1. Let θ, θ′ ∈ { θ| E θ ≤ 1 , θ ≥ 0 }, and μs ( B ( θ�I )), 

μs ( B ( θ′ 
�I )) ≥ μ. We also let, for some ε ≥ 0, √ √ √ √ 

N ∑ 

i =2 

k ∑ 

a,b=0 

(θi, (a,b) − θ ′ 
i, (a,b) 

) 2 ≤ ε √ 

K 

= ˜ ε , (25) 

and ˜ y ∈ B 
R q +(q −1)(N−1) . Suppose that there exists an index set I ⊆ [ K] 

of K − s indices such that for all i ∈ I, | b 
 i ( ̃ y − B ( θ � I ) α( θ, ̃  y )) | < 

η − τ with 
√ 

K ̃  ε ≤ τ2 η
27 , and b i is the i-th atom in B ( θ�I ) . Then, the 

difference between two sparse coding coefficient vectors α( θ, ̃  y ) and 

α( θ
′ 
, ̃  y ) is bounded as 

‖ α( θ, ̃  y ) − α( θ
′ 
, ̃  y ) ‖ 2 ≤ 3 

2 

˜ ε 
√ 

Ks 

ημ
. (26) 

Suppose θ′ is the true shift parameter and θ is the estimate ob- 

tained by solving the problem (20) . Then, this corollary states that 

the error of the sparse coding coefficient α is bounded as Eq. (26) . 

Eq. (25) is the counterpart of ‖ D − D 

′ ‖ 2 in Theorem 1, and based 

on the fact that dictionary D is written as B ( θ � I ) hence 

‖ B ( θ � I ) − B ( θ
′ 
� I ) ‖ 2 = 

√ √ √ √ 

N ∑ 

i =2 

k ∑ 

a,b=0 

(θi, (a,b) − θ ′ 
i, (a,b) 

) 2 ‖ D 

l(a,b) 
i 

‖ 

2 
2 

(27) 

= 

√ √ √ √ K 

N ∑ 

i =2 

k ∑ 

a,b=0 

(θi, (a,b) − θ ′ 
i, (a,b) 

) 2 , (28) 

where we used the assumption that each atom are normalized to 

have unit norm. The bound (26) explicitly contains the dimension 

of the sparse coefficient, and we can see that when we increase 

the dimension K of the sparse coefficient, we need to increase the 

regularization coefficient η for the sparse coding problem to en- 

sure the stability of α with respect to the registration. Finally, we 

show the worst case bound for the error of the sparse coding coef- 

ficient vector α. Noting that the registration coefficient has restric- 

tion 

∑ k 
a,b=0 θi, (a,b) = 1 , θi, (a,b) ≥ 0 for i = 2 , . . . , N, the left hand 

side of Eq. (25) is bounded as 

√ ∑ N 
i =2 

∑ k 
a,b=0 (θi, (a,b) − θ ′ 

i, (a,b) 
) 2 ≤√ 

2 K(N − 1) , hence we obtain the inequality 

‖ α( θ, ̃  y ) − α( θ
′ 
, ̃  y ) ‖ 2 ≤ 3 √ 

2 

√ 

K(N − 1) s 

ημ
, N ≥ 2 , (29) 

as the worst case bound. 

5. Experimental results 

In this section, we report the result of super-resolution on some 

sets of images and those of images from movies 2 . 

2 A simple MATLAB implementation will be made available on author’s website 

following the acceptance of the paper. 
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Illustrative Example



Block Matching

comparison with existing works:

• ASDS (Dong et al. 2011): single-frame, sparse representation
• MF-JDL (Wang_etal2011): multi-frame, sparse representation
• BTV (Farsiu et al. 2004): multi-frame, model-based
• LABTV (Li et al. 2010): multi-frame, model-based
• Proposed (Kato, Hino, and Murata 2015): multi-frame, sparse representation,
block-matching
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(a) ASDS. (b) MF-JDL. (c) BTV.

(d) LABTV. (e) Proposed. (f) Original HR image.

Fig. 11. Reconstructed images estimated from LR observations for Lena. Results by (a) ASDS, (b) MF-JDL, (c) BTV, (d) LABTV, and (e) proposed method with estimated
displacements. The last panel (f) is the original HR image.

(a) ASDS. (b) MF-JDL. (c) BTV.

(d) LABTV. (e) Proposed. (f) Original HR image.

Fig. 12. Reconstructed images estimated from LR observations for Cameraman. Results by (a) ASDS, (b) MF-JDL, (c) BTV, (d) LABTV, and (e) proposedmethodwith estimated
displacements. The last panel (f) is the original HR image.

adding random observation noises. From each set of observed
images, we randomly choose one target image. The only target
image is used for single-frame SR, while in multi-frame SR, the
remaining 4 images are used as auxiliary LR images. The means

and standard deviations of PSNR values are calculated using 100
SR results by each methods. The best results are shown in bold
style. As shown in Table 6, the proposedmethod outperforms other
conventional methods in two out of five images (Cameraman and
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(a) ASDS. (b) MF-JDL. (c) BTV.

(d) LABTV. (e) Proposed. (f) Original HR image.

Fig. 11. Reconstructed images estimated from LR observations for Lena. Results by (a) ASDS, (b) MF-JDL, (c) BTV, (d) LABTV, and (e) proposed method with estimated
displacements. The last panel (f) is the original HR image.

(a) ASDS. (b) MF-JDL. (c) BTV.

(d) LABTV. (e) Proposed. (f) Original HR image.

Fig. 12. Reconstructed images estimated from LR observations for Cameraman. Results by (a) ASDS, (b) MF-JDL, (c) BTV, (d) LABTV, and (e) proposedmethodwith estimated
displacements. The last panel (f) is the original HR image.

adding random observation noises. From each set of observed
images, we randomly choose one target image. The only target
image is used for single-frame SR, while in multi-frame SR, the
remaining 4 images are used as auxiliary LR images. The means

and standard deviations of PSNR values are calculated using 100
SR results by each methods. The best results are shown in bold
style. As shown in Table 6, the proposedmethod outperforms other
conventional methods in two out of five images (Cameraman and
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(a) ASDS. (b) MF-JDL. (c) BTV.

(d) LABTV. (e) Proposed. (f) Original HR image.

Fig. 13. Reconstructed images estimated from LR observations for Flower. Results by (a) ASDS, (b) MF-JDL, (c) BTV, (d) LABTV, and (e) proposed method with estimated
displacements. The last panel (f) is the original HR image.

(a) ASDS. (b) MF-JDL. (c) BTV.

(d) LABTV. (e) Proposed. (f) Original HR image.

Fig. 14. Reconstructed images estimated from LR observations for Girl. Results by (a) ASDS, (b) MF-JDL, (c) BTV, (d) LABTV, and (e) proposed method with estimated
displacements. The last panel (f) is the original HR image.

Flower), and be the second best in the rest three images (Lena, Girl,
and Parthenon).

7.3. Application to motion pictures

To see that the proposed method can be applied to more prac-
tical problems, we perform experiments using LR images sequen-
tially captured from movies. From five consecutive LR images, the
middle (third in the temporal sequence) image is selected as the
target image, and other four are considered as auxiliary images.

Except for the threshold δ, the same parameters shown in Ta-
ble 5 are used in this section. The parameter δ determines whether
an LR image is used for HR image reconstruction or not based on
the matching score (6). This parameter is particularly important in

multi-frame SR applied for LR images captured frommovies. In this
experiment, we show experimental results with δ = 0.003, which
is found to offer good results in our preliminary experiment.

We use a gray-scale movie (MacArthur) and a color movie
(Samurai) for evaluating the performance of SR methods. We cap-
ture five consecutive images from each movie, then their blurred
and down-sampled version is used as LR images. The obtained HR
images using various SR methods are shown in Figs. 16 and 17. Al-
though PSNR is not necessarily an appropriate performance mea-
sure of SR when applied to movie data, we show the obtained
PSNR in Table 7 for reference. From Figs. 16 and 17, the HR im-
ages obtained by the proposed method are clear and have distinct
edges. By comparing to the original HR images, we can see that the
proposed method can reconstruct edges and line-like features in
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(a) ASDS. (b) MF-JDL. (c) BTV.

(d) LABTV. (e) Proposed. (f) Original HR image.

Fig. 15. Reconstructed images estimated from LR observations for Parthenon. Results by (a) ASDS, (b) MF-JDL, (c) BTV, (d) LABTV, and (e) proposed method with estimated
displacements. The last panel (f) is the original HR image.

(a) ASDS. (b) MF-JDL. (c) BTV.

(d) LABTV. (e) Proposed. (f) Original HR image.

Fig. 16. Images estimated from LR observations for MacArthur. Results by (a) ASDS, (b) MF-JDL, (c) Bilateral Total Variation(BTV), (d) Locally Adaptive Bilateral Total
Variation(LABTV), (e) the proposed method, and (f) the original HR image.

Table 6
PSNRs of SR method. The best and second best results are shown by bold and underlined styles, respectively.

Image Bicubic SF-JDL ASDS MF-JDL BTV LABTV Proposed

Lena 27.91± 0.00 28.73± 0.01 30.08± 0.02 29.25± 0.05 29.01± 0.22 29.33± 0.20 29.69± 0.15
Cameraman 27.03± 0.00 28.25± 0.01 29.88± 0.02 28.29± 0.03 29.43± 0.37 29.83± 0.37 30.19± 0.38
Flower 35.50± 0.01 35.81± 0.01 36.22± 0.02 36.32± 0.04 36.26± 0.24 36.46± 0.21 36.61± 0.10
Girl 31.12± 0.00 31.49± 0.01 31.72± 0.01 31.73± 0.02 31.84± 0.17 32.09± 0.16 31.98± 0.06
Parthenon 24.40± 0.00 24.59± 0.00 25.07± 0.01 24.70± 0.02 25.45± 0.19 25.33± 0.13 25.41± 0.09

Table 7
PSNRs and computational times (in parentheses) of SR methods applied to movie data.

Bicubic SF-JDL ASDS MF-JDL BTV LABTV Proposed

MacArthur 34.11 34.33 35.63 35.18 34.39 34.40 34.79
(2.69) (178.08) (133.78) (61.72) (96.17) (27.70)

Samurai 25.36 25.97 26.66 26.12 26.16 26.07 25.90
(2.50) (211.65) (138.38) (62.13) (96.24) (30.75)
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(a) ASDS. (b) MF-JDL. (c) BTV.

(d) LABTV. (e) Proposed. (f) Original HR image.

Fig. 17. Images estimated from LR observations for Samurai. Results by (a) ASDS, (b) MF-JDL, (c) Bilateral Total Variation(BTV), (d) Locally Adaptive Bilateral Total
Variation(LABTV), (e) the proposedmethod, and (f) the original HR image. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

the original images. From Table 7, PSNRs of the proposed method
are lower than ASDS (single-frame method) and MF-JDL (multi-
framemethod). However, the computational costs of the proposed
method are consistently lower than ASDS and other multi-frame
SR methods.

8. Conclusion

In this paper, we proposed a multi-frame SR method based
on sparse coding and sub-pixel accuracy block matching. The
main contribution of the present paper is in proposing a natural
extension of the single-frame SR method based on sparse coding,
with a novel combination of sub-pixel accuracy block matching
and LR atom generation from HR atoms. Another important
contribution is that it can handle a variable number of LR
observations. Among a set of observed LR images, the number
of LR images actually used for SR is automatically determined in
each patch. There would be easy patches and difficult patches
to estimate the displacement from the target patch. When an LR
image is composed of those two different kinds of patches, this
property of automatic patch selection is useful because we can
effectively utilize a subset of LR images where displacements are
estimated with high confidences.

In example-based sparse coding SR, the sparse coding proce-
dure is applied to certain kinds of features. Particularly, to ensure
that the computed coefficient fits the most relevant part of the LR
image, most of recent sparse coding based SRmethods adopt high-
pass filters on both y andDlα. The proposedmethod does not resort
to such a feature extraction procedure because of possible increase
of computational costs. Finally, we are also pursuing a method to
automatically determine the threshold δ using the observed LR im-
ages.
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Double Sparsity

comparison with existing works:

• ASDS (Dong et al. 2011): single-frame, sparse representation
• MF-JDL (Wang_etal2011): multi-frame, sparse representation
• BTV (Farsiu et al. 2004): multi-frame, model-based
• LABTV (Li et al. 2010): multi-frame, model-based
• MF-SC (Kato, Hino, and Murata 2015): multi-frame, sparse representation,
block-matching

• Proposed (Kato, Hino, and Murata 2017): multi-frame, sparse representation,
double sparsity
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5.1. Application to still images 

We assumed that the observed LR images were generated from 

an HR image through parallel shifts, blurring, down-sampling, and 

the addition of noises. The degrees of vertical and horizontal shifts 

were randomly sampled from a uniform distribution in [ −5 , 5] . The 

blurring operation was implemented by the convolution of a 9 ×
9-pixel Gaussian filter with standard deviation σh = 1 . The blurred 

and shifted images were then down-sampled by a factor three. Fi- 

nally, noise sampled from N (0 , σn = 1) were added to generate LR 

observation images. In our experiments, both the intensity of the 

blur and the noise were assumed to be given. Our algorithm it- 

eratively solved the quadratic programming (20) and the sparse 

coding problem (21) . We observed that the algorithm converged 

in fewer than three iterations, and fixed the number of iterations T 

to three for all experiments. We magnified the input LR images by 

factor of three for all cases. We used five LR images to estimate an 

HR images, i.e., N = 5 . 

We compare the proposed method with seven conventional 

methods. The first was bi-cubic interpolation. This is a simple 

method regarded as baseline for SR. The second and third meth- 

ods were Single-Frame Joint Dictionary Learning (SF-JDL; [36] ) 

and Adaptive Sparse Domain Selection (ASDS; [7] ). These methods 

are considered state-of-the-art single-frame SR methods with pub- 

licly available software implementations. The fourth method was 

the one proposed by Wang et al. [34] , which is a multi-frame 

SR method based on joint dictionary learning. We refer to this 

method as MF-JDL (Multi-Frame super resolution based on Joint 

Dictionary Learning). The other two methods were representative 

methods in reconstruction-based SR in the literature. In [12] , a 

multi-frame SR method based on regularization in the form of 

Bilateral Total Variation (BTV) was proposed. Due to its impres- 

sive performance and simplicity, the method has become one of 

the most commonly used in multi-frame SR. BTV was further im- 

proved in [21] , where the method based on regularization by Lo- 

cally Adaptive Bilateral Total Variation (LABTV) was proposed. In 

this paper, these reconstruction-based methods were referred to as 

BT V and LABT V, respectively. Finally, we also used the multi-frame 

SR method based on sparse coding proposed in our previous pa- 

per [17] , which is referred to as MF-SC. 

There were several tuning parameters for each SR method. To 

make fair comparison, we first optimized the parameters of each 

method to maximize the PSNR of the image “Lena”, which is one 

of the most commonly used benchmark images in image process- 

ing. For all other images, we continued to use the same parameters 

optimized for Lena. 

We used two grayscale images (Lena and Cameraman), and 

three color images (Flower, Girl, and Parthenon) to assess the per- 

formance of SR methods. When dealing with color images, we first 

converted them to YCbCr format and then apply SR methods only 

to the luminance channel (Y). The values of the channels Cb and 

Cr were simply expanded by bi-cubic interpolation. 

The experimental results are shown in Figs. 4–8 . To focus on the 

difference between our previous method and the newly proposed 

method, we only show the original images, the degraded images, 

the images obtained by MF-SC and those obtained by our proposed 

method. These figures indicate that the proposed method was able 

to generate images comparable or better than those of MF-SC. 

For a quantitative comparison of SR methods, we used the Peak 

Signal-to-Noise Ratio (PSNR), defined as 

PSNR [dB] = 10 log 10 

255 

2 

MSE 

, (30) 

where MSE is the mean squared error between the original HR im- 

age and the estimated HR image; a higher PSNR indicates better SR 

performance. We show PSNR values obtained by various methods 

Fig. 4. Reconstructed images estimated from LR observations for Lena. (a) Observed 

LR image. (b) Original HR image. Results of (c) MF-SC(our previous work), and 

(d) the proposed method. 

Fig. 5. Reconstructed images estimated from LR observations for Cameraman. 

(a) Observed LR image. (b) Original HR image. Results o (c) MF-SC, and (d) the pro- 

posed method. 
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5.1. Application to still images 
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9-pixel Gaussian filter with standard deviation σh = 1 . The blurred 

and shifted images were then down-sampled by a factor three. Fi- 
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multi-frame SR method based on regularization in the form of 

Bilateral Total Variation (BTV) was proposed. Due to its impres- 

sive performance and simplicity, the method has become one of 

the most commonly used in multi-frame SR. BTV was further im- 

proved in [21] , where the method based on regularization by Lo- 

cally Adaptive Bilateral Total Variation (LABTV) was proposed. In 

this paper, these reconstruction-based methods were referred to as 

BT V and LABT V, respectively. Finally, we also used the multi-frame 

SR method based on sparse coding proposed in our previous pa- 

per [17] , which is referred to as MF-SC. 

There were several tuning parameters for each SR method. To 

make fair comparison, we first optimized the parameters of each 

method to maximize the PSNR of the image “Lena”, which is one 

of the most commonly used benchmark images in image process- 

ing. For all other images, we continued to use the same parameters 

optimized for Lena. 

We used two grayscale images (Lena and Cameraman), and 

three color images (Flower, Girl, and Parthenon) to assess the per- 

formance of SR methods. When dealing with color images, we first 

converted them to YCbCr format and then apply SR methods only 

to the luminance channel (Y). The values of the channels Cb and 

Cr were simply expanded by bi-cubic interpolation. 

The experimental results are shown in Figs. 4–8 . To focus on the 

difference between our previous method and the newly proposed 

method, we only show the original images, the degraded images, 

the images obtained by MF-SC and those obtained by our proposed 

method. These figures indicate that the proposed method was able 

to generate images comparable or better than those of MF-SC. 

For a quantitative comparison of SR methods, we used the Peak 

Signal-to-Noise Ratio (PSNR), defined as 

PSNR [dB] = 10 log 10 

255 

2 

MSE 

, (30) 

where MSE is the mean squared error between the original HR im- 

age and the estimated HR image; a higher PSNR indicates better SR 

performance. We show PSNR values obtained by various methods 

Fig. 4. Reconstructed images estimated from LR observations for Lena. (a) Observed 

LR image. (b) Original HR image. Results of (c) MF-SC(our previous work), and 

(d) the proposed method. 

Fig. 5. Reconstructed images estimated from LR observations for Cameraman. 

(a) Observed LR image. (b) Original HR image. Results o (c) MF-SC, and (d) the pro- 

posed method. 
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Fig. 6. Reconstructed images estimated from LR observations for Flower. (a) Ob- 

served LR image. (b) Original HR image. Results of (c) MF-SC, and (d) the proposed 

method. 

Fig. 7. Reconstructed images estimated from LR observations for Girl. (a) Observed 

LR image. (b) Original HR image. Results of (c) MF-SC, and (d) the proposed method. 

in Table 1 . To evaluate the PSNR values, we randomly generated 

100 sets of 5 shift operators and generated degraded images by 

adding random observation noises. From each set of observed im- 

ages, we randomly chose one target image. Only the target image 

was used for single-frame SR, whereas in multi-frame SR, the re- 

maining 4 images were used as auxiliary LR images. The mean val- 

ues and standard deviations of the PSNR values were calculated us- 

ing 100 SR results of each methods. The best and the second-best 

results are shown in bold and are underlined, respectively. The av- 

eraged computational time over 100 trials are also shown in paren- 

theses. As shown in Table 1 , the proposed method outperformed 

the other conventional methods for two out of five images (Cam- 

eraman and Flower), and was the second-best for Lena. It showed 

improvement over our previous method in two images, was the 

Fig. 8. Reconstructed images estimated from LR observations for Parthenon. (a) Ob- 

served LR image. (b) Original HR image. Results of (c) MF-SC, and (d) the proposed 

method. 

same in one image, and was slightly worse in the other two im- 

ages. The proposed method requires more computational time than 

our previous method, but comparable or faster than other meth- 

ods. We can see that the proposed method, which has theoretically 

interesting double sparse structure, has comparable performance 

over other methods in both image reconstruction quality and com- 

putational cost. 

Illustration of the double sparsity structure. For deeper understand- 

ing of the behavior of our algorithm, we illustrate, for “Lena” image 

as an example, the estimated registration coefficients by our pro- 

pose double sparse dictionary learning. For the original HR Lena 

image, we applied the following four different shift operations: 

S 2 = (2 , 3) , S 3 = (3 , 2) , S 4 = (0 , 1) , S 5 = (1 , 0) , 

where S i = (a, b) means the i th observed image has relative dis- 

placement to the target image, a pixel in horizontal and b pixel 

in vertical directions. We can consider sub-pixel level shifts in 

HR space, but to simplify the explanation, we consider pixel-level 

shifts in HR space. We note that we consider five LR observations 

and treat the first one as the target image, hence we only con- 

sider four shift operations. The target and shifted images were 

then degenerated by applying the blur, downsampling, and addi- 

tive noise as in Eq. (5) . We extracted a patch of size q = 5 × 5 

from the target LR observed image, and corresponding 4 × 4 

patches from four auxiliary LR images. According to the possi- 

ble (N − 1) × (k + 1) 2 = 4 × 16 = 64 different pixel-level shifts in 

HR space, we generated 64 LR dictionaries, which are the ele- 

ment dictionaries in terms of the double sparse dictionary learning 

framework. The stacked observed patch 

˜ y was generated from the 

target and auxiliary patches. Then, we obtained the registration co- 

efficients θ by solving the problem (20) . The length of the coeffi- 

cient vector θ was 64, which were composed of N − 1 blocks corre- 

sponding to the j th observed image ( j = 2 , . . . , 5 ), and these blocks 

were of length 16. For an arbitrary chosen patch, we show four 

blocks of coefficients in Fig. 9 by barplots. In the barplots, the in- 

dices corresponds to the true shifts are marked with 

∗. From these 

plots, we can see that the estimated coefficients are sparse and 

the elements correspond to the true shifts have large values as 

expected. Fig. 9 is an example of the estimated registration coef- 

ficients for one patch, but we saw the same tendency of the es- 

timated coefficients for other patches. We show average of esti- 

mated registration coefficients over whole patches in Fig. 10 . It is 
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Fig. 10. Average of the estimated registration coefficients for four shift patterns. 

Fig. 11. Images estimated from LR observations for MacArthur. (a) Observed LR im- 

age. (b) Original HR image. Results of (c) MF-SC, and (d) the proposed method. 

dictionaries, such as information integration from observations by 

autonomous mobile robots. 

Our future work includes an application of the proposed 

method to other signal resolution enhancement problems as well 

as further improvement of computational efficiency by using or de- 

veloping optimization methods for sparse coding and shift estima- 

tion. It is interesting to optimize the learning method of HR dic- 

tionary for super resolution task. For example, in the framework 

of the super resolution based on sparse coding, we generate the 

LR atoms from HR atoms. In reality, there can be a lot of differ- 

Fig. 12. Images estimated from LR observations for Samurai. (a) Observed LR image. 

(b) Original HR image. Results of (c) MF-SC, and (d) the proposed method. 

ent ways of degeneration of an HR atom that results in the same 

LR atom. So, when we optimize the HR dictionary, making each 

atom in HR space as different as possible would improve the over- 

all super resolution results. The way to impose this constraint and 

how to formulate the optimization problem will be investigated in 

our future work. It is also of great interest to investigate the rela- 

tionship between the double sparse structure and the intermediate 

representation obtained by using the deep neural network architec- 

ture [6] . 
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Fig. 10. Average of the estimated registration coefficients for four shift patterns. 

Fig. 11. Images estimated from LR observations for MacArthur. (a) Observed LR im- 

age. (b) Original HR image. Results of (c) MF-SC, and (d) the proposed method. 

dictionaries, such as information integration from observations by 

autonomous mobile robots. 

Our future work includes an application of the proposed 

method to other signal resolution enhancement problems as well 

as further improvement of computational efficiency by using or de- 

veloping optimization methods for sparse coding and shift estima- 

tion. It is interesting to optimize the learning method of HR dic- 

tionary for super resolution task. For example, in the framework 

of the super resolution based on sparse coding, we generate the 

LR atoms from HR atoms. In reality, there can be a lot of differ- 

Fig. 12. Images estimated from LR observations for Samurai. (a) Observed LR image. 

(b) Original HR image. Results of (c) MF-SC, and (d) the proposed method. 

ent ways of degeneration of an HR atom that results in the same 

LR atom. So, when we optimize the HR dictionary, making each 

atom in HR space as different as possible would improve the over- 

all super resolution results. The way to impose this constraint and 

how to formulate the optimization problem will be investigated in 

our future work. It is also of great interest to investigate the rela- 

tionship between the double sparse structure and the intermediate 

representation obtained by using the deep neural network architec- 

ture [6] . 
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PSNRs and Computational Times

SF-JDL ASDS MF-JDL BTV LABTV MF-SC Proposed
MacArthur 34.33 35.63 35.18 34.39 34.40 34.79 35.63

(2.69) (178.08) (133.78) (61.72) (96.17) (27.70) (61.74)
Samurai 25.97 26.66 26.12 26.16 26.07 25.90 26.49

(2.50) (211.65) (138.38) (62.13) (96.24) (30.75) (59.86)

PSNR[dB] = 10 log10

2552

MSE
computational times[sec] (in parentheses)
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Conclusion



Concluding Remarks

we have investigated

• multi-frame super resolution method based on sparse representation
• registration performance of sub-pixel block matching and double sparsity

practical applications would be

• old or historic movies
• medical images

which consist of a number of low-resolution images
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