IMAGE SUPER-RESOLUTION WITH SPARSE CODING

IMAGE REPRESENTAION AND REGISTRATION

Noboru Murata

June 21, 2023

https://noboru-murata.github.io/

OUTLINE

Introduction background single-frame vs multi-frame Problem Formulation sparse representation single-frame super-resolution multi-frame super-resolution Illustrative Example block matching double sparsity Conclusion **INTRODUCTION**

request for image processing:

- development of new devices
- re-mastering of histrical images

(a) LR frame.

- problem:
 - restore a clear image from low-resolution images
 - consider degradation caused by
 - noise
 - blur
 - down-sampling
- typical setup:
 - single-frame: one low-resolution image
 - multi-frame: multiple low-resolution images with different degradation processes
- typical approaches:
 - model-based: e.g. random Markov field
 - example-based: e.g. sparse representation

SINGLE-FRAME VS MULTI-FRAME

single-frame super-resolution

multi-frame super-resolution

MULTI-FRAME IMAGE SUPER-RESOLUTION

PROBLEM FORMULATION

- notation:
 - dictionary: $\mathbf{D} = (d_1, d_2, \dots, d_k) \in \mathbb{R}^{p \times k}$
 - observation: $\mathbf{y} \in R^p$
 - coefficients: $oldsymbol{lpha} \in \mathbb{R}^k$

optimization problem

estimate appropriate α and **D**:

$$\underset{\boldsymbol{\alpha},\mathbf{D}}{\text{minimize}} \|\mathbf{y} - \mathbf{D}\boldsymbol{\alpha}\|_2^2 + \eta \|\boldsymbol{\alpha}\|_1$$

• notation:

- X: high-resolution image
- Y: low-resolution image
- model of degradation process:

 $Y = \mathbb{L}X + \varepsilon = \mathbb{SHW}X + \varepsilon$

where degradation $\ensuremath{\mathbb{L}}$ is decomposed as

- S: down-sampling
- \cdot \mathbb{H} : blurring
- \cdot W: warping

and ε is additive noise

- hypothesis:
 - single observation: $Y = \mathbb{L}X + \varepsilon$
 - **x**: patch of X
 - y: corresponding patch of Y
 - sparse representation with identical coefficients:

 $\begin{aligned} \mathbf{x} &= \mathbf{D}^{h} \boldsymbol{\alpha} \quad (\mathbf{D}^{h} : \text{high-resolution dictionary}) \\ \mathbf{y} &= \mathbf{D}^{l} \boldsymbol{\alpha} \quad (\mathbf{D}^{l} : \text{low-resolution dictionary}) \\ &\simeq \mathbb{L} \mathbf{x} = \mathbb{L} \mathbf{D}^{h} \boldsymbol{\alpha} \quad (\text{linearity assumption}) \end{aligned}$

problem

estimate of α from a low-resolution image:

$$\min_{\boldsymbol{\alpha}} \min \| \mathbf{y} - \mathbf{D}^{l} \boldsymbol{\alpha} \|_{2}^{2} + \eta \| \boldsymbol{\alpha} \|_{1}$$

MULTI-RESOLUTION DICTIONARIES

key issue

construct good \mathbf{D}^l from \mathbf{D}^h

- hypothesis:
 - multiple observations: Y_1, \ldots, Y_N

$$Y_k = \mathbb{L}_k X + \varepsilon_k, \quad k = 1, \dots, N$$

- **x**: patch of X
 - y_k : corresponding patches of Y
- sparse representation:

$$\mathbf{x} = \mathbf{D}^h \boldsymbol{\alpha}$$

 $\mathbf{y}_k = \mathbf{D}_k^l \boldsymbol{\alpha} \simeq \mathbb{L}_k \mathbf{x} = \mathbb{L}_k \mathbf{D}^h \boldsymbol{\alpha}$

- problem:
 - estimate of α from multiple low-resolution images:

$$\underset{\alpha}{\mathsf{minimize}} \|\tilde{\pmb{y}} - \tilde{\mathbf{D}}^l \pmb{\alpha}\|_2^2 + \eta \|\pmb{\alpha}\|_1$$

where \tilde{D} and \tilde{y} are stacked as

$$\tilde{\mathbf{D}}^{l} = \begin{bmatrix} \mathbf{D}_{1}^{l} \\ \vdots \\ \mathbf{D}_{N}^{l} \end{bmatrix} \text{ and } \tilde{\mathbf{y}} = \begin{bmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{N} \end{bmatrix}$$

STACKED OBSERVATIONS AND DICTIONARIES

key issue

appropriately align multiple low-resolution images and dictionaries

- simple approach: (Kato, Hino, and Murata 2015)
 - block matching with reference patch

estimate $\hat{\mathbb{L}}_k = \mathbb{SH}\hat{\mathbb{W}}_k$ s.t. $\mathbf{y}_k = \hat{\mathbb{L}}_k \mathbf{x}$

• sub-pixel accuracy method (Shimizu and Okutomi 2006)

stacked observation:

$$\tilde{\mathbf{y}} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_N \end{bmatrix}$$
 where $\mathbf{y}_k = \hat{\mathbb{L}}_k \mathbf{x} = \mathbb{SH}\hat{\mathbb{W}}_k \mathbf{x}$

• stacked dictionary:

$$\tilde{\mathbf{D}}^{l} = \begin{bmatrix} \mathbf{D}_{1}^{l} \\ \vdots \\ \mathbf{D}_{N}^{l} \end{bmatrix} \text{ where } \mathbf{D}_{k}^{l} = \hat{\mathbb{L}}_{k} \mathbf{D}^{h} = \mathbb{SH}\hat{\mathbb{W}}_{k} \mathbf{D}^{h}$$

- sparse representation approach: (Kato, Hino, and Murata 2017)
 - prepare "meta-dictionary"
 - construct a dictionary
 - $\cdot \,$ which is sparse combination of meta-dictionary
 - which offers sparse representation of target observations

(Rubinstein, Zibulevsky, and Elad 2010)

MULTI-FRAME ALIGNMENT

- notation:
 - dictionary for observation y_i:

$$\mathbf{D}_{i}^{l} = \theta_{i,(0,0)} \mathbf{D}^{l(0,0)} + \theta_{i,(0,1)} \mathbf{D}^{l(0,1)} + \dots + \theta_{i,(k,k)} \mathbf{D}^{l(k,k)}$$

meta-dictionary matrix:

$$\mathbf{B} = \begin{bmatrix} \mathbf{D}_{1}^{l} & & & \\ & \mathbf{D}^{l(0,0)} & \cdots & \mathbf{D}^{l(k,k)} & & \\ & & & \ddots & \\ & & & & \mathbf{D}^{l(0,0)} & \cdots & \mathbf{D}^{l(k,k)} \end{bmatrix}$$

meta-dictionary coefficient:

$$\boldsymbol{\theta} = \begin{bmatrix} 1, \theta_{2,(0,0)}, \dots, \theta_{2,(k,k)}, \dots, \theta_{N,(0,0)}, \dots, \theta_{N,(k,k)} \end{bmatrix}^{\mathrm{T}}$$

• objective:

$$\begin{split} \underset{\boldsymbol{\alpha},\boldsymbol{\theta}}{\text{minimize}} \|\tilde{\boldsymbol{y}} - \mathbf{B} \operatorname{vec} \left(\boldsymbol{\alpha} \boldsymbol{\theta}^{\mathrm{T}}\right)\|_{2}^{2} + \eta \|\boldsymbol{\alpha}\|_{1} \\ \text{subject to } \mathbf{E}\boldsymbol{\theta} \leq \mathbf{1}, \ \boldsymbol{\theta} \geq \mathbf{0}, \ \theta_{1} = 1 \end{split}$$

where

$$\mathbf{E} = \begin{bmatrix} 1 & & & & \\ & 1 & \cdots & 1 & & \\ & & & \ddots & & \\ & & & & 1 & \cdots & 1 \end{bmatrix}$$

• optimization for registration:

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \|\tilde{\boldsymbol{y}} - \mathbf{B}(\mathbf{I} \otimes \boldsymbol{\alpha})\boldsymbol{\theta}\|_2^2$$

subject to $\mathbf{E} oldsymbol{ heta} \leq \mathbf{1}, \ oldsymbol{ heta} \geq \mathbf{0}$

• optimization for sparse representation:

$$\hat{\boldsymbol{\alpha}} = \arg\min_{\boldsymbol{\alpha}} \|\tilde{\boldsymbol{y}} - \mathbf{B}(\boldsymbol{\theta} \otimes \mathbf{I})\boldsymbol{\alpha}\|_{2}^{2} + \eta \|\boldsymbol{\alpha}\|_{1}$$
(21)

STRUCTURE OF DOUBLE SPARSITY

ILLUSTRATIVE EXAMPLE

comparison with existing works:

- ASDS (Dong et al. 2011): single-frame, sparse representation
- MF-JDL (Wang_etal2011): multi-frame, sparse representation
- BTV (Farsiu et al. 2004): multi-frame, model-based
- LABTV (Li et al. 2010): multi-frame, model-based
- Proposed (Kato, Hino, and Murata 2015): multi-frame, sparse representation, block-matching

a) ASDS.

(b) MF-JDL.

(c) BTV.

(e) Proposed.

(f) Original HR image.

a) ASDS.

(b) MF-JDL.

(c) BTV.

d) LABTV.

(e) Proposed.

(f) Original HR image.

(a) ASDS.

(b) MF-JDL.

(c) BTV.

(d) LABTV.

(e) Proposed.

(f) Original HR image.

(a) ASDS.

(b) MF-JDL.

(c) BTV.

(d) LABTV.

(e) Proposed.

(f) Original HR image.

(a) ASDS.

(c) BTV.

(d) LABTV.

(e) Proposed.

(f) Original HR image.

comparison with existing works:

- ASDS (Dong et al. 2011): single-frame, sparse representation
- MF-JDL (Wang_etal2011): multi-frame, sparse representation
- BTV (Farsiu et al. 2004): multi-frame, model-based
- LABTV (Li et al. 2010): multi-frame, model-based
- MF-SC (Kato, Hino, and Murata 2015): multi-frame, sparse representation, block-matching
- Proposed (Kato, Hino, and Murata 2017): multi-frame, sparse representation, double sparsity

(a) Observed LR image (b) Original HR image

(c) MF-SC (d) Proposed

(a) Observed LR image (b) Original HR image

(c) MF-SC (

(d) Proposed

(a) Observed LR image (b) Original HR image

(c) MF-SC

(d) Proposed

(a) Observed LR image

(b) Original HR image

(c) MF-SC

(d) Proposed

(a) Observed LR image

(b) Original HR image

(c) MF-SC

(d) Proposed

PSNRs and Computational Times

	SF-JDL	ASDS	MF-JDL	BTV	LABTV	MF-SC	Proposed
MacArthur	34.33	35.63	35.18	34.39	34.40	34.79	35.63
	(2.69)	(178.08)	(133.78)	(61.72)	(96.17)	(27.70)	(61.74)
Samurai	25.97	26.66	26.12	26.16	26.07	25.90	26.49
	(2.50)	(211.65)	(138.38)	(62.13)	(96.24)	(30.75)	(59.86)

$$\begin{split} \mathrm{PSNR}[\mathsf{dB}] &= 10 \log_{10} \frac{255^2}{\mathrm{MSE}} \\ \mathrm{computational\ times[sec]\ (in\ parentheses)} \end{split}$$

CONCLUSION

we have investigated

- \cdot multi-frame super resolution method based on sparse representation
- registration performance of sub-pixel block matching and double sparsity

practical applications would be

- old or historic movies
- medical images

which consist of a number of low-resolution images

- Dong, Weisheng et al. (Jan. 28, 2011). "Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization." In: IEEE Transactions on Image Processing 20 (7), pp. 1838–1857. DOI: 10.1109/TIP.2011.2108306. PMID: 21278019.
- Farsiu, Sina et al. (Oct. 2004). "Fast and robust multiframe super resolution." In: IEEE Transactions on Image Processing 13 (10), pp. 1327–1344. DOI: 10.1109/TIP.2004.834669. PMID: 15462143.
- Kato, Toshiyuki, Hideitsu Hino, and Noboru Murata (Mar. 9, 2015). "Multi-frame image super resolution based on sparse coding." In: Neural Networks 66, pp. 64–78. DOI: 10.1016/j.neunet.2015.02.009.
- (May 31, 2017). "Double sparsity for multi-frame super resolution." In: Neurocomputing 240, pp. 115–126. DOI: 10.1016/j.neucom.2017.02.043.
- Li, Xuelong et al. (Feb. 2010). **"A multi-frame image super-resolution method."** In: Signal Processing 90 (2), pp. 405–414. DOI: **10.1016/j.sigpro.2009.05.028**.

- Rubinstein, Ron, Michael Zibulevsky, and Michael Elad (Mar. 2010). "Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation." In: IEEE Transactions on Signal Processing 58 (3), pp. 1553–1564. DOI: 10.1109/TSP.2009.2036477.
 Shimizu, Massa and Massatoshi Okutomi (May. 2006). "Multi Parameter."
- Shimizu, Masao and Masatoshi Okutomi (May 2006). **"Multi-Parameter Simultaneous Estimation on Area-Based Matching."** In: International Journal of Computer Vision 67 (3), pp. 327–342. DOI: **10.1007/s11263-006-5632-3**.