ESTIMATION OF NEURAL CONNECTIONS FROM MULTIPLE SPIKE TRAINS

GRAPH STRUCTURE INFERENCE WITH NUISANCE INPUTS

Noboru Murata

June 19, 2023

https://noboru-murata.github.io/

OUTLINE

Introduction
motivated problem
issues to be solved
Problem Formulation
mathematical model
estimation method
Numerical Examples
synthetic data analysis
real data analysis
Conclusion

INTRODUCTION

- estimating neural connections
 - understand functions of biological systems
 - investigate learning/adaptation mechanisms
- \cdot typical methods for measuring brain activities
 - fMRI (functional magnetic resonance imaging)
 - MEG (magnetoencephalography)
 - EEG (electroencephalography)
 - TPE (two-photon excitation microscopy)
 - multi-electrode recording
- different resolutions in
 - time (oxygen consumption neuron firing)
 - space (brain mapping synaptic connections)

MULTI-ELECTRODE RECORDING

by courtesy of Dr. Tatsuno at University of Lethbridge

activities of individual neurons

- multiple neurons (tens - hundreds)
- long term measurement (several hours - several days)

multi-variate point process

rearranged as binary sequence indicating states of neurons

- 0: resting
- 1: firing

multi-variate binary time series contains information of neural interactions

times

GRAPH STRUCTURE INFERENCE

mathematical representation – directed graph

- node: neuron
- edge: synaptic connection

Objective

estimate weights of edges from binary time series at nodes

typical methods for analysis

- pair-wise:
 - cross-correlation
 - (e.g. Wilson and McNaughton 1994)
 - joint peri-stimulus time histogram (e.g. Ito and Tsuji 2000)
- graph-based:
 - sparse inverse covariance matrix (e.g. Friedman, Hastie, and Tibshirani 2008)
 - digraph Laplacian (e.g. Noda et al. 2014)
- higher-order:
 - information geometric measure (e.g. Nakahara and Amari 2002; Tatsuno, Fellous, and Amari 2009)
 - Granger causality (e.g. Kim et al. 2011)

- \cdot pseudo correlation caused by
 - higher-order effects
 - dynamical systems
- influence from unobserved neurons
- · directed excitatory/inhibitory connections

correlation coefficient: statistics for analyzing relation of two random variables

- no direct relation exists
- two nodes are connected with the same node

correlation coefficient: statistics for analyzing relation of two random variables

- no direct relation exists
- two nodes are connected with the same node

pseudo-correlation

• spurious relation appears

correlation coefficient: statistics for analyzing relation of two random variables

- no direct relation exists
- two nodes are connected with the same node

Pseudo correlation

a common problem in complex network analysis

pseudo-correlation

 \cdot spurious relation appears

delayed correlation coefficient: statistics for analyzing time series

- appropriate intervals have to be considered
- information propagates multiple paths
- \cdot spurious relation appears

delayed correlation coefficient: statistics for analyzing time series

- appropriate intervals have to be considered
- information propagates multiple paths
- \cdot spurious relation appears

• consider short intervals?

delayed correlation coefficient: statistics for analyzing time series

- appropriate intervals have to be considered
- information propagates multiple paths
- \cdot spurious relation appears

consider short intervals?

• spike intervals are random

a mathematical framework for treating

- pseudo correlation caused by higher-order effects and dynamical systems
- influence from unobserved neurons
- directed excitatory/inhibitory connections

a mathematical framework for treating

- pseudo correlation caused by higher-order effects and dynamical systems
- influence from unobserved neurons
- directed excitatory/inhibitory connections

Main contribution

solve those problems with simple mathematical tricks

PROBLEM FORMULATION

indeces

- $i \in \{1, 2, \dots, N\}$: index of neurons
- $t \in \{1, 2, \dots, T\}$: discrete time of measurement
- $t_{\Delta} = [t \Delta, \dots, t 1]$: interval for delayed correlation
- states
 - $X_i(t) \in \{0, 1\}$: state of neuron *i* at time *t*
 - $X_i[t_\Delta] \in \{0, 1\}$: state of neuron *i* in interval t_Δ
 - $U_i(t) \in \mathbb{R}$: internal state of neuron *i* at time *t*
- \cdot connections
 - $w_{ij} \in \mathbb{R}$: synaptic connection from neuron *j* to neuron *i*
 - $\lambda_{ij} \in \mathbb{R}$: pseudo connection from neuron *j* to neuron *i*

weighted sum of inputs from unobserved/observed neurons

$$U_i(t) = B_i(t) + \sum_{j=1}^N \lambda_{ij} X_j[t_\Delta],$$

 $B_i(t)$: nuisance inputs from unobserved neurons λ_{ii} : pseudo connection including undirect paths

Remarks

- signal from neuron *j* has several paths
- $\cdot \lambda_{ij}$ includes direct and undirect connections

stochastic dependency on internal state:

$$\begin{split} \Pr\bigl(X_i(t) = 1\bigr) &= \Phi_{\sigma^2}\bigl(U_i(t)\bigr), \\ \Phi_{\sigma^2} : \text{cdf of } \mathcal{N}(0, \sigma^2). \end{split}$$

Assumption

 \cdot we assume a probit model, where Φ_{σ^2} is the integral of

$$\phi_{\sigma^2}(z) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{z^2}{2\sigma^2}\right)$$

• internal state

$$U_{i}(t) = B_{i}(t) + \sum_{j=1}^{N} \lambda_{ij} X_{j}[t_{\Delta}],$$

$$B_{i}(t) : \text{nuisance inputs,}$$

$$\lambda_{ij} : \text{pseudo connection.}$$

• neuron firing

$$\begin{split} \Pr\bigl(X_i(t) &= 1\bigr) = \Phi_{\sigma^2}\bigl(U_i(t)\bigr), \\ \phi_{\sigma^2}(z) &= \frac{1}{\sqrt{2\pi\sigma^2}}\exp\Bigl(-\frac{z^2}{2\sigma^2}\Bigr), \\ \Phi_{\sigma^2} &: \text{cdf of } \mathcal{N}(0,\sigma^2), \text{ integral of } \phi_{\sigma^2}. \end{split}$$

First step

 \cdot remove nuisance input *B* and estimate pseudo connection λ

$$U_i(t) = \frac{B_i(t)}{D_i(t)} + \sum_{j=1}^N \frac{\lambda_{ij}X_j[t_\Delta]}{D_i(t_\Delta)}$$

Theorem

Let X and Y be independent random variables. For any function g, we have

 $\mathbb{E}[g(X+Y)] = \mathbb{E}[h(X+\mathbb{E}[Y])],$

where $f_{\rm Y}$ is the pdf of Y and

$$f_{Y}^{-}(x) = f_{Y}(\mathbb{E}[Y] - x),$$
$$h = g * f_{Y}^{-}.$$

A special case is discussed in Hyvärinen 2002.

Corollary

If function g is Φ_{σ^2} and random variable X is constant value x, and probability density function f_Y is Gaussian with mean $\mathbb{E}[Y]$ and variance τ^2 , we have

 $\mathbb{E}[\Phi_{\sigma^2}(\mathsf{X}+\mathsf{Y})] = \Phi_{\sigma^2+\tau^2}(\mathsf{X}+\mathbb{E}[\mathsf{Y}]).$

• consider the case of $X_j[t_\Delta] = 1$,

$$U_i(t \mid X_j[t_\Delta] = 1) = B_i(t) + \lambda_{ij}X_j[t_\Delta] + \sum_{k \neq j} \lambda_{ik}X_k[t_\Delta]$$
$$= \lambda_{ij} + C_{ij}(t \mid X_j[t_\Delta] = 1).$$

• consider the case of $X_j[t_\Delta] = 1$,

$$U_i(t \mid X_j[t_\Delta] = 1) = B_i(t) + \lambda_{ij}X_j[t_\Delta] + \sum_{k \neq j} \lambda_{ik}X_k[t_\Delta]$$
$$= \lambda_{ij} + C_{ij}(t \mid X_j[t_\Delta] = 1).$$

 \cdot let us apply the corollary for calculating conditional expectation

$$\mathbb{E}[X_i(t) \mid X_j[t_\Delta] = 1] = \mathbb{E}\left[\Phi_{\sigma^2} \left(U_i(t \mid X_j[t_\Delta] = 1)\right)\right]$$
$$= \mathbb{E}\left[\Phi_{\sigma^2} \left(\lambda_{ij} + C_{ij}(t \mid X_j[t_\Delta] = 1)\right)\right]$$
$$= \Phi_{\rho^2}(\lambda_{ij} + \bar{C}_{ij}),$$

where we assume $C_{ij} \sim \mathcal{N}(\bar{C}_{ij}, \tau^2)$ and $\rho^2 = \sigma^2 + \tau^2$.

 \cdot for binary random variables, the following holds

 $\mathbb{E}[X_i(t) \mid X_j[t_{\Delta}] = 1] = \Pr(X_i(t) = 1 \mid X_j[t_{\Delta}] = 1).$

 \cdot for binary random variables, the following holds

 $\mathbb{E}[X_i(t) \mid X_j[t_{\Delta}]=1] = \Pr(X_i(t)=1 \mid X_j[t_{\Delta}]=1).$

• therefore, we obtain

$$\begin{split} \Phi_{\rho^2}(\lambda_{ij} + \mathcal{C}_{ij}) &= \Pr(X_i(t) = 1 \mid X_j[t_\Delta] = 1), \\ \Leftrightarrow \quad \lambda_{ij} + \bar{\mathcal{C}}_{ij} &= \rho \cdot \Phi_1^{-1} \big(\Pr(X_i(t) = 1 \mid X_j[t_\Delta] = 1) \big). \end{split}$$

• consider the both cases of $X_j[t_{\Delta}] = 1$ and $X_j[t_{\Delta}] = 0$,

$$U_{i}(t \mid X_{j}[t_{\Delta}] = 1) = \lambda_{ij} + C_{ij}(t \mid X_{j}[t_{\Delta}] = 1),$$

$$U_{i}(t \mid X_{j}[t_{\Delta}] = 0) = C_{ij}(t \mid X_{j}[t_{\Delta}] = 0).$$

• consider the both cases of $X_j[t_{\Delta}] = 1$ and $X_j[t_{\Delta}] = 0$,

$$U_{i}(t \mid X_{j}[t_{\Delta}] = 1) = \lambda_{ij} + C_{ij}(t \mid X_{j}[t_{\Delta}] = 1),$$

$$U_{i}(t \mid X_{j}[t_{\Delta}] = 0) = C_{ij}(t \mid X_{j}[t_{\Delta}] = 0).$$

Assumption

$$C_{ij}(t \mid X_j[t_\Delta] = 1), C_{ij}(t \mid X_j[t_\Delta] = 0) \sim \mathcal{N}(\bar{C}_{ij}, \tau^2)$$

• consider the both cases of $X_j[t_{\Delta}] = 1$ and $X_j[t_{\Delta}] = 0$,

$$U_{i}(t \mid X_{j}[t_{\Delta}] = 1) = \lambda_{ij} + C_{ij}(t \mid X_{j}[t_{\Delta}] = 1),$$

$$U_{i}(t \mid X_{j}[t_{\Delta}] = 0) = C_{ij}(t \mid X_{j}[t_{\Delta}] = 0).$$

Assumption

$$C_{ij}(t \mid X_j[t_\Delta] = 1), C_{ij}(t \mid X_j[t_\Delta] = 0) \sim \mathcal{N}(\bar{C}_{ij}, \tau^2)$$

 \cdot then we obtain

$$\begin{split} \lambda_{ij} + \bar{C}_{ij} &= \rho \cdot \Phi_1^{-1} \big(\Pr(X_i(t) = 1 \mid X_j[t_\Delta] = 1) \big), \\ \bar{C}_{ij} &= \rho \cdot \Phi_1^{-1} \big(\Pr(X_i(t) = 1 \mid X_j[t_\Delta] = 0) \big). \end{split}$$

 $\textcircled{0} \textcircled{0} \cdot 1 \circ \cdots \circ \circ \cdots \circ 2 \circ \cdots \circ \circ \cdots \circ \cdot \cdots \circ 3 \circ \cdots \circ \circ \cdot 4 \cdots$

 \cdot estimator of pseudo connection

$$\lambda_{ij} = \rho \Big\{ \Phi_1^{-1} \big(\Pr(X_i(t) = 1 \mid X_j[t_\Delta] = 1) \big) \\ - \Phi_1^{-1} \big(\Pr(X_i(t) = 1 \mid X_j[t_\Delta] = 0) \big) \Big\}.$$

· empirical estimates of conditional probability

$$\Pr(X_{i}(t) = 1 \mid X_{j}[t_{\Delta}] = 1) = \frac{1}{Z} \sum_{t} X_{i}(t \mid X_{j}[t_{\Delta}] = 1),$$

$$\Pr(X_{i}(t) = 1 \mid X_{j}[t_{\Delta}] = 0) = \frac{1}{Z'} \sum_{t} X_{i}(t \mid X_{j}[t_{\Delta}] = 0).$$

Second step

- decompose pseudo connections λ with direct connections w

$$\lambda_{ij} = (j \rightarrow i) + \cdots$$

Second step

 $\cdot\,$ decompose pseudo connections λ with direct connections w

$$\lambda_{ij} = (j \rightarrow i) + (j \rightarrow$$

· consider an expansion with appropriate δ, δ' (delay time)

$$\lambda_{ij} = w_{ij} + \sum_{k} w_{ik} \Pr(X_k(t-\delta) = 1 \mid X_j(t-\delta') = 1) + (\text{higher order terms}).$$

 \cdot introduce a virtual probability with an appropriate interval t_{δ}

$$\theta_{ij} = \Pr(X_i(t) = 1 \mid X_j[t_{\delta}] = 1).$$

 \cdot we obtain an expansion of λ as

$$\lambda_{ij} = w_{ij} + \sum_{k} w_{ik} \theta_{kj} + \sum_{k,l} w_{ik} \theta_{kl} \theta_{lj} + \sum_{k,l,m} w_{ik} \theta_{kl} \theta_{lm} \theta_{mj} + \cdots$$

 \cdot this expression gives a simple matrix form

$$\Lambda = W(I + \Theta + \Theta^2 + \Theta^3 + \cdots) \qquad \qquad \triangleright \text{Neumann series}$$
$$= W(I - \Theta)^{-1},$$

where $W = (w_{ij})$ and $\Theta = (\theta_{ij})$.

• relation between θ and w:

$$\begin{aligned} \theta_{ij} &= \Pr(X_i(t) = 1 \mid X_j[t_{\delta}] = 1) \\ &= \mathbb{E} \left[\Phi_{\sigma^2}(w_{ij} + C'_{ij}) \right] \\ &= \Phi_{\rho^2} \left(w_{ij} + \mathbb{E}[C'_{ij}] \right) \end{aligned}$$

▷ use expectation form ▷ t_{δ} is small enough ▷ by the corollary • relation between θ and w:

$$\theta_{ij} = \Pr(X_i(t) = 1 \mid X_j[t_{\delta}] = 1)$$

= $\mathbb{E} \left[\Phi_{\sigma^2}(w_{ij} + C'_{ij}) \right]$
= $\Phi_{\rho^2} \left(w_{ij} + \mathbb{E}[C'_{ij}] \right)$

▷ use expectation form ▷ t_{δ} is small enough ▷ by the corollary

Assumption

$$C'_{ij} \sim \mathcal{N}(\bar{C}_{ij}, \tau^2)$$

• relation between θ and w:

$$\theta_{ij} = \Pr(X_i(t) = 1 \mid X_j[t_{\delta}] = 1)$$
$$= \mathbb{E} \left[\Phi_{\sigma^2}(w_{ij} + C'_{ij}) \right]$$
$$= \Phi_{\rho^2} \left(w_{ij} + \mathbb{E}[C'_{ij}] \right)$$

> use expectation form
> t_δ is small enough
> by the corollary

Assumption

$$C'_{ij} \sim \mathcal{N}(\bar{C}_{ij}, \tau^2)$$

• calculate θ by using w as

$$\theta_{ij} = \Phi_{\rho^2}(w_{ij} + \bar{C}_{ij}),$$

$$\bar{C}_{ij} = \rho \cdot \Phi_1^{-1} \big(\Pr(X_i(t) = 1 \mid X_j[t_\Delta] = 0) \big).$$

(1)
 (1)
 (1)
 (1)
 (1)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)

Third step

- estimate types of neurons consistent with data:
 - excitatory neurons positive connections only
 - inhibitory neurons negative connections only

Third step

- estimate types of neurons consistent with data:
 - excitatory neurons positive connections only
 - inhibitory neurons negative connections only

treated as hidden variables $\pmb{z} \in \{0,1\}^N$

 $\Pr(\text{Data} \mid W, \mathbf{z}) \Leftrightarrow \Pr(\mathbf{z} \mid \text{Data}, W)$

Third step

- estimate types of neurons consistent with data:
 - excitatory neurons positive connections only
 - inhibitory neurons negative connections only

treated as hidden variables $\mathbf{z} \in \{0, 1\}^N$

 $\Pr(\text{Data} \mid W, \mathbf{z}) \Leftrightarrow \Pr(\mathbf{z} \mid \text{Data}, W)$

use em algorithm (Amari 1995) with approximations:

- factorial model in data manifold
- Gibbs sampling

1: Input: Λ, C, Z 2: function ESTIMATEW(Λ, \bar{C}, z) Initialization: $\Theta^{(1)} \leftarrow [0,1]^{N \times N}$. $\Lambda^{(1)} \leftarrow \Lambda$ 3: for $\tau \leftarrow 1, T$ do 4. $W^{(\tau+1)} \leftarrow \Lambda^{(\tau)}(I - \Theta^{(\tau)})$ 5. for $i \leftarrow 1, N$ do 6: for $i \leftarrow 1, N$ do 7: $[\hat{W}(\mathbf{z})^{(\tau+1)}]_{ij} \leftarrow \begin{cases} Z_j[W^{(\tau+1)}]_{ij}, & [W^{(\tau+1)}]_{ij} > 0\\ (1-Z_i)[W^{(\tau+1)}]_{ii}, & [W^{(\tau+1)}]_{ii} < 0 \end{cases}$ 8: $\left[\Theta^{(\tau+1)}\right]_{ii} \leftarrow \Phi_1\left(\left[\hat{W}(\mathbf{z})^{(\tau+1)}\right]_{ij} + \bar{C}_{ij}\right)\right)$ 9: diag($\Theta^{(\tau+1)}) \leftarrow 0$ ▷ update diagonal elements 10. $\Lambda^{(\tau+1)} \leftarrow \Lambda^{(\tau)}$ 11: $\operatorname{diag}(\Lambda^{(\tau+1)}) \leftarrow \operatorname{diag}(\Lambda^{(\tau)}\Theta^{(\tau+1)})$ ▷ update diagonal elements 12: 13: Output: $\hat{W}(z)$

NUMERICAL EXAMPLES

Synthetic Data Analysis

Izhikevich's neuron model (Izhikevich 2003)

- \cdot N = 33 out of 100 neurons
- excitatory:inhibitory = 80%:20%
- $W_{ij} \sim \text{Unif}[-10, 10]$
- $\#\{\mathsf{W}_{i}\} \leq 10$

ESTIMATION RESULT

remarks

- estimation is scale indeterminate
- \cdot inhibitory connections are difficult to estimate

PERFORMANCE

remarks

- estimation accuracy gets better if neuron types are given
- \cdot order of weights is estimated with sufficient accuracy

SENSITIVITY VS INTERVAL SIZE

remark

· sensitivity is affected by choice of correlation interval

memory trace replay (Wilson and McNaughton 1994; Tatsuno, Lipa, and McNaughton 2006)

- purpose: examine the hyposesis "the replay of activity patterns during sleep plays an important role in the consolidation process of memory"
- measurements:
 - pre-task: activity of control
 - task: activity in learning stage
 - post-task: activity in non-REM stage

ESTIMATION RESULT

remarks

- some connections changed at task period are retained at post-task period (e.g. 8,11,12,20)
- result should be discussed from the viewpoint of biology

CONCLUSION

we consider an approach to solve the following problems

- pseudo correlation caused by higher-order effect
- influence from unobserved neurons
- · directional excitatory/inhibitory connections

possible extension would be

- estimating the number of connections
- \cdot estimating activation functions of individual neurons
- applying other real-world data

- Amari, Shun-ichi (Jan. 1995). "The EM Algorithm and Information Geometry in Neural Network Learning." In: Neural Computation 7.1, pp. 13–18. DOI: 10.1162/neco.1995.7.1.13.
- Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (July 2008). **"Sparse inverse covariance estimation with the graphical lasso."** In: *Biostatistics* 9.3, pp. 432–441. DOI: **10.1093/biostatistics/kxm045**.
- Hyvärinen, Aapo (Aug. 6, 2002). "Gaussian moments for noisy independent component analysis." In: IEEE Signal Processing Letters 6 (6), pp. 145–147. DOI: 10.1109/97.763148.
- Ito, Hiroyuki and Satoshi Tsuji (Jan. 2000). "Model Dependence in Quantification of Spike Interdependence by Joint Peri-Stimulus Time Histogram." In: Neural Computation 12.1, pp. 195–217. DOI: 10.1162/089976600300015952.
- Iwasaki, Taishi et al. (Aug. 18, 2018). "Estimation of neural connections from partially observed neural spikes." In: Neural Networks 108, pp. 172–191. DOI: 10.1016/j.neunet.2018.07.019.

- Izhikevich, Eugene M. (Nov. 2003). "Simple model of spiking neurons." In: IEEE Transactions on Neural Networks 14 (6), pp. 1569–1572. DOI: 10.1109/TNN.2003.820440.
- Kim, Sanggyun et al. (Mar. 24, 2011). "A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity." In: PLoS Computational Biology 7.3. DOI: 10.1371/journal.pcbi.1001110.
- Nakahara, Hiroyuki and Shun-ichi Amari (Oct. 2002). "Information-Geometric Measure for Neural Spikes." In: Neural Computation 14.10, pp. 2269–2316. DOI: 10.1162/08997660260293238.
- Noda, Atsushi et al. (July 2014). "Intrinsic Graph Structure Estimation Using Graph Laplacian." In: Neural Computation 26.7, pp. 1455–1483. DOI: 10.1162/NECO_a_00603.
- Tatsuno, Masami, Jean-Marc Fellous, and Shun-ichi Amari (Aug. 2009). "Information-Geometric Measures as Robust Estimators of Connection Strengths and External Inputs." In: Neural Computation 21.8, pp. 2309–2335. DOI: 10.1162/neco.2009.04-08-748.

 Tatsuno, Masami, Peter Lipa, and Bruce L. McNaughton (Oct. 18, 2006). "Methodological Considerations on the Use of Template Matching to Study Long-Lasting Memory Trace Replay." In: The Journal of Neuroscience 26 (42), pp. 10727–10742. DOI: 10.1523/JNEUROSCI.3317-06.2006. PMID: 17050712.
 Wilson, Matthew A. and Bruce L. McNaughton (July 29, 1994). "Reactivation of Hippocampal Ensemble Memories During Sleep." In: Science 265 (5172), pp. 676–679. DOI: 10.1126/science.8036517. PMID: 8036517.