TIME-VARYING TRANSITION PROBABILITY MATRIX

APPLICATION TO BRAND SHARE ANALYSIS

Noboru Murata

June 20, 2023

https://noboru-murata.github.io/

OUTLINE

Introduction

- motivated examples
- stationary distribution of Google matrix

Problem Formulation

- time-varying graph and transition matrix
- graph estimation problem
- Numerical Examples
 - real-world data analysis

Conclusion

INTRODUCTION

two problems in graph inference:

• direct problem (deductive):

induce properties from known graph structure

- shortest path, traveling salesman, graph coloring %problem
- maximum flow, minimum cut %problem
- Google search (stationary distribution of Google matrix)
- inverse problem (inductive):

estimate graph structure from partially observed properties

- path analysis, graphical model estimation
- sparse estimation of accuracy matrix
- structure estimation via graph Laplacian

automobile sales data of manufacturers

Questions

- why sales shares vary?
- what happens in customer preferences?

RUNNING EXAMPLE

directed graph

- number of node: 26
- edge exist.: 0.1
- weight:
 uniform on [0, 1]

• adjacency matrix W

 $(W)_{ij}$ = strength of connection from *i* to *j*

 \cdot indicate vector of sink node a

$$(\boldsymbol{a})_{i} = \begin{cases} 1, & \text{if } (W\boldsymbol{e})_{i} = 0\\ 0, & \text{otherwise} \end{cases}$$

where **e** is a vector of all 1

• normalized adjacency matrix (transition matrix) H

 $H = \operatorname{diag}(W\boldsymbol{e} + \boldsymbol{a})^{-1}W$

 $(H\boldsymbol{e})_i = 1$ holds except for sink nodes

 $\cdot\,$ transition matrix with sink node adjustment S

S =H + **ae**^T/n =(probabilistic transition) + (escape from sink nodes)

probability matrix: S**e** = **e**

• Google matrix G

 $G = \alpha S + (1 - \alpha) e e^T / n$

=(transition along edges) + (random transition)

probability matrix: Ge = e

- · $\alpha = 0.85$
- · initial: \setminus uniform dist.

- $\alpha = 0.85$
- · initial: \setminus uniform dist.

- · $\alpha = 0.85$
- · initial: \setminus uniform dist.

- · $\alpha = 0.85$
- · initial: \setminus uniform dist.

- · $\alpha = 0.85$
- · initial: \setminus uniform dist.

- $\alpha = 0.85$
- · initial: \setminus uniform dist.

- $\alpha = 0.85$
- · initial: \setminus uniform dist.

- $\alpha = 0.85$
- · initial: \setminus uniform dist.

- $\alpha = 0.85$
- · initial: \setminus uniform dist.

- $\alpha = 0.85$
- · initial: \setminus uniform dist.

- $\alpha = 0.85$
- · initial: \setminus uniform dist.

- $\alpha = 0.85$
- · initial: \setminus uniform dist.

transient process

$$\cdot \alpha = 0.85$$

• initial: \ uniform dist.

- · $\alpha = 0.85$
- initial:12 nodes

transient process

PROPERTY OF STATIONARY DISTRIBUTION

©©⊚ 1 faşt convergence to the same stationary distribution

fașt convergence to the same stationary distribution

ⓒ())
()

0

• $\alpha = 0.5$

- $\alpha = 0.5$
- initial: uniform dist.

- $\alpha = 0.5$
- initial: uniform dist.

- $\alpha = 0.5$
- initial: uniform dist.

• $\alpha = 0.5$

- $\alpha = 0.5$
- initial: uniform dist.

•
$$\alpha = 0.5$$

PROPERTY OF SCALING (α **)**

©® 1 ◦ • ◦ • • • • • • 2 ◦ • • random diffusion with smaller scaling

PROPERTY OF SCALING (α **)**

node

©® 1 ◦ · ◦ · · · · · · 2 ◦ · · random diffusion with smaller scaling

- \cdot without sink node escape
- initial: uniform dist.

- \cdot without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

- without sink node escape
- initial: uniform dist.

transient process

- without sink node escape
- initial: uniform dist.

PROPERTY OF SINK NODE

with sink node adjustment

transient process

without sink node adjustment

O \rule{O} O O O O \rule{O} $\rule{O} \\ \rule{O} \cr \rule{O} \\ \rule{O} \\$

a simple and strong model of movements on directed graph:

- \cdot behavior model of selection from finite options
 - web surf model
 - purchase model of certain genres
 - transition model of audience ratings
 - customer share model of restaurants/coffee shops
- adjustment of transition matrix (sink node/alpha)
 - out of stock or service
 - capricious or adventurous attempts
 - introduction from others

PROBLEM FORMULATION

non-stationary data on directed graphs:

- strength of edges slowly change in time
 - change of structure
 - change of stationary distribution
- model assumption:
 - frequent update (fast time scale; t)
 e.g.: purchase every day
 - sparse observation (slow time scale; T)
 e.g.: aggregate every week

observations are supposed to be on stationary distribution at current point

change of structure

- 10% edges at random
- relatively small

change of structure

- 10% edges at random
- relatively small

change of structure

- 10% edges at random
- relatively small

- 10% edges at random
- relatively small

- 10% edges at random
- relatively small

- 10% edges at random
- relatively small

- 10% edges at random
- relatively small

- 10% edges at random
- relatively small

- 10% edges at random
- relatively small

- 10% edges at random
- relatively small

- 10% edges at random
- relatively small

- 10% edges at random
- relatively small

- 10% edges at random
- large effect

change of stationary states

- 10% edges at random
- large effect

Problem

for given series of stationary distributions $\{\pi_t\}$, estimate series of graph structures $\{G_t\}$.

```
minimize L({G_t}) subject to \forall t, \pi_t^T G_t = \pi_t^T
```

difficulties:

- · infinitely many matrices have the same eigenvector
- the followings are needed:
 - assumptions on graph structures
 - assumptions of graph changes

e.g. (fused lasso): for a certain sparse norm of matrix, $\|\cdot\|_{s,}$

$$L({G_t}) = \sum_{t_2} \|G_t\|_s + \sum_{s} \|G_{t+1} - G_t\|_s$$

make matrices keep in a restricted subspace:

• eigenvector of matrix A to be a (unit vector):

 $Aa = \lambda a + b \Rightarrow A - ba^T \rightarrow A$

 \cdot eigenvalue of eigenvector **a** to be μ :

$$Aa = \lambda a \Rightarrow A + (\mu - \lambda)aa^T \rightarrow A$$

• A to be a probability matrix:

$$Ae = d \Rightarrow \operatorname{diag}(d)^{-1}A \rightarrow A$$

NUMERICAL EXAMPLES

Reference

Chiba et al. "Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis"

- quarterly unit automobile sales data of manufacturers from 2007-1Q to 2015-4Q
- estimate transition paths and discuss the relation between social events and estimated results
- objective:

$$L(\{G_t\}) = \sum_t \|G_{t+1} - G_t\|_1$$

• optimization: simplex method with slack variables

automobile sales for different manufactures

market share transition

averages and standard deviations of sales shares

- remove minor edge below
 0.24
- show market share with node size
- $\cdot\,$ cf. GM and Honda are allied

In March 2008, TOYOTA has become the world's top seller by beating GM

In 2009, TOYOTA launched a massive recall

In 2013, VW beats GM in total sales amount to claim second position in the automobile industry

CONCLUSION

we presented the followings

- \cdot a model of transitions and stationary distributions
- a simple method for estimating transition matrices from a sequence of stationary distributions
- analysis of consumer transitions for sales share data without detailed recording of consumer transitions

further investigation would be devoted to

- other objectives and constraints to improve the accuracy of estimation and interpretability
- other probabilistic models for estimating changes in transitions

Chiba, Tomoaki et al. (Jan. 11, 2017). "Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis." In: *PLoS ONE* 12.1, e0169981. DOI: 10.1371/journal.pone.0169981.